The effect of metal remediation on the virulence and antimicrobial resistance of the opportunistic pathogen Pseudomonas aeruginosa

Author:

Lear Luke1ORCID,Hesse Elze1,Newsome Laura2,Gaze William3,Buckling Angus1,Vos Michiel3ORCID

Affiliation:

1. College of Life and Environmental Science University of Exeter Penryn UK

2. College of Engineering, Mathematics and Physical Sciences University of Exeter Penryn UK

3. European Centre for Environment and Human Health University of Exeter Medical School Penryn UK

Abstract

AbstractAnthropogenic metal pollution can result in co‐selection for antibiotic resistance and potentially select for increased virulence in bacterial pathogens. Metal‐polluted environments can select for the increased production of siderophore molecules to detoxify non‐ferrous metals. However, these same molecules also aid the uptake of ferric iron, a limiting factor for within‐host pathogen growth, and are consequently a virulence factor. Anthropogenic methods to remediate environmental metal contamination commonly involve amendment with lime‐containing materials. However, whether this reduces in situ co‐selection for antibiotic resistance and siderophore‐mediated virulence remains unknown. Here, using microcosms containing non‐sterile metal‐contaminated river water and sediment, we test whether liming reduces co‐selection for these pathogenicity traits in the opportunistic pathogen Pseudomonas aeruginosa. To account for the effect of environmental structure, which is known to impact siderophore production, microcosms were incubated under either static or shaking conditions. Evolved P. aeruginosa populations had greater fitness in the presence of toxic concentrations of copper than the ancestral strain and showed increased resistance to the clinically relevant antibiotics apramycin, cefotaxime and trimethoprim, regardless of lime addition or environmental structure. Although we found virulence to be significantly associated with siderophore production, neither virulence nor siderophore production significantly differed between the four treatments. Furthermore, liming did not mitigate metal‐imposed selection for antibiotic resistance or virulence in P. aeruginosa. Consequently, metal‐contaminated environments may select for antibiotic resistance and virulence traits even when treated with lime.

Funder

Natural Environment Research Council

UK Research and Innovation

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3