Fast preparation of porous anatase material via CuO‐mediated glass crystallization and acid‐leaching

Author:

Zhao Jiejie1,Liu Shiquan1ORCID

Affiliation:

1. School of Materials Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong P. R. China

Abstract

AbstractAs an attempt to facilitate the mass production of porous anatase catalysts in industry, in this work, frits with molar ratios of MgO:TiO2:P2O5 = 20:32:24 and an extra addition of CuO (0, 8, 16, and 24 mol%) were first prepared by melt water‐quenching method. The frits were further heat‐ and acid‐treated, forming porous anatase consisting of nanosheets. The study showed that the CuO‐containing samples had increasing crystallization of anatase and even the crystallization of CuO nano‐rods. The easy dissolution of CuO nano‐rods and the abundant grain boundaries in the heat‐treated samples provided path for the acid‐leaching and greatly accelerated the selective dissolution of the crystallized samples, reducing the acid‐leaching time from 48 h for the CuO‐free sample to 3 h for the sample containing 24 mol% CuO to form a similar porous structure. The preformed anatase acted as nucleus to induce the in situ growth of anatase nanosheets. As a result, CuO greatly fastened the formation of porous anatase, making the industrial production of porous anatase possible.

Funder

Qilu University of Technology

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3