Unveiling surface stability and oxygen vacancy segregation of Yb2SiO5 and Lu2SiO5 by first‐principles calculations

Author:

Fan Yun1,Zhao Juanli1,Li Jiancheng1,Chu Kaili1,Zhang Yanning1,Li Yiran1ORCID,Li Wenxian12,Liu Bin1ORCID

Affiliation:

1. School of Materials Science and Engineering Shanghai University Shanghai China

2. School of Materials Science and Engineering University of New South Wales Sydney New South Wales Australia

Abstract

AbstractRE2SiO5 (RE = Yb and Lu) are significant environmental barrier coating (EBC) materials, in which surface and oxygen vacancy play crucial roles in their structural stability and functionality. In this work, the structural configuration and thermodynamics of (1 0 0), (0 1 0), and (0 0 1) surfaces of RE2SiO5 are investigated by first‐principles calculations. The (0 0 1) surface is preferred energetically, which is attributed to the weak bond broken environment and large rare‐earth polyhedron distortion on this surface. Moreover, the formation energies of various oxygen vacancies on the stable (0 0 1) surface are estimated and the optimal location for oxygen vacancies is held by the [SiO4] tetrahedron. The oxygen vacancies are more likely to segregate on the surface because of the lower formation energies on the surfaces compared with those in the bulk. These findings are expected to enable the development of RE2SiO5‐based EBCs by tuning grain size and/or thin film growth orientation.

Funder

National Natural Science Foundation of China

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3