Affiliation:
1. School of Chemical Engineering Inner Mongolia University of Technology Hohhot China
2. Inner Mongolia Key Laboratory of Thin Film and Coatings School of Materials Science and Engineering Inner Mongolia University of Technology Hohhot China
Abstract
AbstractAt high temperatures in gas turbines, traditional yttria stabilized zirconia materials fail prematurely owing to CMAS (calcium–magnesium–alumina–silicate) corrosion. Thus, new materials need to be developed urgently. In this study, LaPO4 powder was synthesized by chemical coprecipitation and heat treatment using lanthanum nitrate (La(NO3)3∙6H2O) and ammonium dihydrogen phosphate (NH4H2PO4) as starting materials, and LaPO4 bulk was prepared by spark plasma sintering. The surface of the LaPO4 bulk was coated with CMAS (CaO–MgO–Al2O3–SiO2) powder, and the CMAS interaction with the LaPO4 bulk at different temperatures was investigated. The phase and microstructure of the LaPO4 powder and bulk, as well as the CMAS corrosion products, were characterized using X‐ray diffraction and scanning electron microscope. The superior CMAS resistance of the LaPO4 bulk was attributed to the low wettability of LaPO4 by the CMAS melt and the development of dense layers of new corrosion products, which effectively protected the LaPO4 bulk from CMAS infiltration.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Ceramics and Composites
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献