Affiliation:
1. State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
2. School of Intelligent Manufacturing and Electronic Engineering Wenzhou University of Technology Wenzhou China
3. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
4. Institut Des Sciences Chimiques de Rennes, UMR 6226 CNRS Université de Rennes 1 Rennes France
Abstract
AbstractThere are numerous vital usages for mid‐infrared (MIR) lasers in satellite communication, biomedicine, military, remote sensing, and environmental monitoring. In this work, a progression of Er3+ ions doped, Er3+/Pr3+ ions co‐doped Ga5Ge20Sb10S65 glasses were prepared, and their physical performances and structural characteristics were examined. To understand the non‐phonon‐assisted energy transfer mechanism, we recorded the up‐conversion and infrared fluorescence emission spectra by pumping with a commercial 980 nm LD. Then the 2.7 µm strong fluorescence signal intensity can be obtained when the doped concentration of Pr3+ is proper. After the doping of Pr3+, fluorescence lifetime results revealed that the lifetimes of the Er3+:4I13/2 level fell dramatically from 7.33 to 1.90 ms, which experienced a much more significant decrease in lifetimes than the Er3+:4I11/2 level. The MIR fluorescence performances were assessed by the determined J–O parameters and relative emission cross sections. Additionally, the generally huge emission cross sections and the small pump energy show that it is possible to obtain population inversion with relatively small pump energy; thus the Er3+/Pr3+ glasses have great potential to be 2.7 µm laser materials.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Ceramics and Composites
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献