Anisotropy free energy contribution of the ferroelectric domain dynamics in PMN‐PT and PIN‐PMN‐PT relaxor ferroelectrics

Author:

Pérez‐Moyet Richard1ORCID,Cardona‐Quintero Yenny1,Doyle Ian M.1,Heitmann Adam A.1

Affiliation:

1. Sensors and Sonar Systems Department Naval Undersea Warfare Center Newport Rhode Island USA

Abstract

AbstractA direct correlation between the materials property behavior with its associated ferroelectric domain mechanisms and the anisotropic component of the Landau free energy is established for binary PMN‐PT (generation I) and ternary PIN‐PMN‐PT (generation II) relaxor ferroelectric single crystal material systems. In addition to their trade‐off in material properties, the observed ferroelectric domain dynamic and the determined free energy anisotropies, especially as approaching phase transition, provide direct insights into the materials field‐dependent behavior between the binary and ternary ferroelectric systems. Domain configuration features such as lamellar structures in binary PMN‐PT and concentric oval‐like structures in ternary PIN‐PMN‐PT result in different material responses to external stimuli. Compared to binary PMN‐PT, the concentric oval‐like domain structures of ternary PIN‐PMN‐PT result in a 20°C higher temperature range of field‐dependent linear behavior, 40% increase in coercive electric field higher elastic stiffness during ferroelectric domain switching, and lower electromechanical energy losses. Separation of the isotropic and anisotropic components in the Landau free energy reveals a higher anisotropic free energy contribution from the ternary system, especially at temperature for practical applications. The high anisotropic free energy found in the ternary PIN‐PMN‐PT system implies that the concentric oval‐like domain structure contributes to reduced electromechanical energy losses and enhanced stability under external applied fields.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3