Hydrolytic properties of two cellulases of Trichoderma reesei expressed in yeast

Author:

Bailey MJ,Siika‐aho M.,Valkeajarvi A.,Penttila ME

Abstract

Two cellulases of the filamentous fungus Trichoderma reesei, cellobiohydrolase II (CBHII, EC 3.2.1.91) and endoglucanase I (EGI, EC 3.2.1.4), produced in recombinant strains of the yeast Saccharomyces cerevisiae, were tested in the hydrolysis of cellulose, xylan and other polymeric substrates. Both enzymes were active against unsubstituted, insoluble cellulose. CBHII had greater activity than EGI against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence for synergism was obtained when mixtures of the two enzymes were used with a constant total protein dosage. The EGI was also active against soluble substituted cellulose derivatives, whereas the activity of CBHII against these substrates was insignificant. Both enzymes were active against barley (1–>3,1–>4)‐beta‐glucan, but were inactive against (1–>3,1–>6)‐beta‐glucan (laminarin). An apparent low mannan‐degrading activity of EGI against locust‐bean (Ceratonia siliqua) gum galactomannan was not confirmed when homopolymeric mannan was used as substrate in a prolonged hydrolysis test. EGI exhibited considerably greater activity against insoluble, unsubstituted hardwood xylan than against amorphous cellulose. Soluble 4‐O‐methyl‐glucuronoxylan was also attacked by EGI, although to a somewhat lesser extent than the unsubstituted xylan. By comparison with two purified xylanases of T. reesei, EGI produced xylo‐oligosaccharides with a longer mean chain length when acting on both substituted and unsubstituted xylan substrates. CBHII was inactive against xylan.

Publisher

Wiley

Subject

Process Chemistry and Technology,Drug Discovery,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,General Medicine,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3