Anthropogenic and environmental risk factors of salmonid predation in a tidal freshwater delta

Author:

Nelson T. Reid1ORCID,Lehman Brendan M.2,Demetras Nicholas J.2,Takata Lance2,Young Matthew J.3,Feyrer Frederick3,Michel Cyril J.2ORCID

Affiliation:

1. Department of Environmental Science and Policy, Potomac Environmental Research and Education Center George Mason University Woodbridge Virginia USA

2. Fisheries Collaborative Program Affiliated with: Fisheries Ecology Division, Institute of Marine Sciences, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration University of California Santa Cruz Santa Cruz California USA

3. California Water Science Center U.S. Geological Survey Sacramento California USA

Abstract

Abstract Water diversions that support agricultural and municipal use result in fish mortality through entrainment and impingement. Additionally, this infrastructure may attract both predators and prey fishes, thereby increasing predation rates and prey mortality near these anthropogenic contact points. The Sacramento–San Joaquin Delta (the Delta) in California's Central Valley is a tidal freshwater ecosystem that exports large volumes of water for municipal and agricultural use while at the same time providing valuable migratory and rearing habitat for imperilled fishes. Emigrating juvenile salmonids experience high mortality in the Delta, with predation by non‐native fishes contributing substantially. Therefore, this study had three main objectives. First, we determined if small water diversions aggregated piscivorous fishes like other similar structures in freshwater ecosystems. Second, we determined how small diversions may influence juvenile salmon predation risk in conjunction with other known predation risk factors (e.g. predator abundance, temperature and depth). Third, we assessed the predator assemblage, abundance and distribution to determine the likely predator composition in objectives one and two. Throughout the spring of 2021, we used ARIS (adaptive resolution imaging sonar; Sound Metrics) sonars to compare piscivore abundance at 30 water diversions in the north Delta to shorelines adjacent to diversions that did not contain these structures. We used predation event recorders (PERs) to assess the predation risk juvenile salmonids were exposed to, with linear distance (m) from diversions, and other predation risk factors in the north Delta. Finally, we used a boat electrofishing survey to determine the piscivore assemblage and compare spatial trends in black bass (Micropterus spp.) CPUE and relative abundance throughout these waterways. Piscivore abundance was greater near small water diversions than at adjacent shorelines and the predation risk of juvenile salmonids increased with diversion proximity. Additionally, predation risk increased with increasing piscivore abundance and decreasing water depth. The north Delta predator assemblage was dominated by black basses (Micropterus spp.), which likely drove the negative relationship of predation risk with water depth, given habitat requirements of these species. Furthermore, increasing smallmouth (Micropterus dolomieu) and spotted bass (Micropterus punctulatus) abundance in our northern study sites may have weakened temperature effects on predation, given metabolic requirements of these species. Our work demonstrated that small water diversions are likely to increase mortality of endangered salmonids, and that the north Delta predator assemblage was different than recorded by previous work in this system, changing predation risk factors. Although more work is needed to determine the population level impacts of diversions, the ubiquitous distribution of these structures warrants management solutions to reduce mortality from this source. These results indicate that in addition to entrainment and impingement, water diversions may increase mortality of small‐bodied fishes by attracting predators and elevating predation risk. Given the continual human demand for freshwater, predator–prey interactions should be considered along with entrainment and impingement when assessing intake infrastructure mitigation, especially when diversions co‐occur along migratory routes and essential habitat of imperilled fishes.

Funder

Bureau of Reclamation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3