Spatial replication can best advance our understanding of population responses to climate

Author:

Compagnoni Aldo123ORCID,Evers Sanne123,Knight Tiffany123

Affiliation:

1. Martin Luther University Halle‐Wittenberg Halle (Saale) Germany

2. Department of Community Ecology, Helmholtz Centre for Environmental Research–UFZ Halle (Saale) Germany

3. German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Puschstrasse Leipzig Germany

Abstract

Understanding the responses of plant populations dynamics to climatic variability is frustrated by the need for long‐term datasets. Here, we advocate for new studies that estimate the effects of climate by sampling replicate populations in locations with similar climate. We first use data analysis on spatial locations in the conterminous USA to assess how far apart spatial replicates should be from each other to minimize temporal correlations in climate. We find that on average spatial locations separated by 316 km (SD = 149 km) have moderate (0.5) correlations in annual precipitation. Second, we use simulations to demonstrate that spatial replication can lead to substantial gains in the range of climates sampled during a given set of years so long as the climate correlations between the populations are at low to moderate levels. Third, we use simulations to quantify how many spatial replicates would be necessary to achieve the same statistical power of a single‐population, long‐term data set under different strengths and directions of spatial correlations in climate between spatial replicates. Our results indicate that spatial replication is an untapped opportunity to study the effects of climate on demography and to rapidly fill important knowledge gaps in the field of population ecology.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3