Accelerated forest restoration may benefit spotted owls through landscape complementation

Author:

Jones G. M.1ORCID,Stanley C. K.2ORCID,Peery M. Z.3,Maxwell C.4,Wilson K. N.2ORCID

Affiliation:

1. USDA Forest Service, Rocky Mountain Research Station Albuquerque NM USA

2. The Nature Conservancy San Francisco CA USA

3. Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA

4. Institute for Natural Resources, Oregon State University Corvallis OR USA

Abstract

AbstractAnimals often rely on the presence of multiple, spatially segregated cover types to satisfy their ecological needs; the juxtaposition of these cover types is called landscape complementation. In ecosystems that have been homogenized because of human land use, such as fire‐suppressed forests, management activities have the potential to increase the heterogeneity of cover types and, therefore, landscape complementation. We modeled changes to California spotted owl (Strix occidentalis occidentalis) nesting/roosting habitat, foraging habitat and habitat co‐occurrence (i.e. landscape complementation) within a 971 245‐ha forest landscape restoration project area, the Tahoe‐Central Sierra Initiative (TCSI) landscape, through mid‐century as a function of fuels reduction, fire and climate change. Compared to a minimal management scenario, accelerated management within the TCSI landscape was predicted to increase the number of potential 400‐ha spotted owl territories containing a high degree of landscape complementation (defined as containing >20% nest/roost habitat and >20% foraging habitat) at lower elevations (<5000 ft.) by an average of 90 to 118 territories by 2050, depending on the climate scenario examined. At higher elevations (>5000 ft.), potential benefits of treatments to spotted owl nesting/roosting and foraging habitat were less evident, but accelerated management did not result in habitat loss. Our results suggest that accelerated fuels reduction and forest restoration treatments within this large landscape are expected to benefit spotted owls by improving the spatial juxtaposition of nesting/roosting and foraging cover types by 2050 compared to a minimal management scenario. Fuels reduction and forest restoration in this landscape thus can both increase the resilience of forest ecosystems to disturbances as well as benefit the habitat of a sensitive old‐forest species.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3