Common‐garden experiment reveals outbreeding depression and region‐of‐origin effects on reproductive success in a frequently translocated tortoise

Author:

Loope K. J.12ORCID,DeSha J. N.2,Aresco M. J.3,Shoemaker K. T.4ORCID,Hunter E. A.15ORCID

Affiliation:

1. Department of Fish and Wildlife Conservation Virginia Tech Blacksburg Virginia USA

2. Department of Biology Georgia Southern University Statesboro Georgia USA

3. Nokuse Bruce Florida USA

4. Department of Natural Resources and Environmental Science University of Nevada, Reno Reno Nevada USA

5. U.S. Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit Blacksburg Virginia USA

Abstract

AbstractHuman‐mediated animal movement can expose wildlife populations to novel environments. Phenotypic plasticity can buffer against the challenges presented by novel environments, while adaptation to local ecosystems may limit resilience in novel ecosystems. Outbreeding depression during the mixing of disparate gene pools can also reduce reproductive success after long‐distance movement. Here, we use a ‘common‐garden’ population of gopher tortoises (Gopherus polyphemus), translocated from numerous sites across the state of Florida, USA, to a mitigation site in the north‐west (panhandle) region to assess whether geographic origin, outbreeding effects, and behavioral plasticity influence reproductive success in this threatened keystone species. We found that females from north‐east Florida produced clutches with lower hatching success than females from other regions. We detected regional differentiation in nest site selection behavior in the common environment of the translocation site, though these differences did not mediate the regional effect on hatching success. We also found evidence for outbreeding depression: hatching success declined with increasing parental geographic and genetic distances, dropping from 93% to 67% across the range of observed parental genetic distances. Together, these results suggest that newly admixed populations may suffer reproductive costs due to historical population differentiation, and that undetected outbreeding depression could significantly hamper conservation efforts for this species and others undergoing a variety of human‐mediated movements.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3