Low risk management intervention: Limited impact of remedial tillage on net ecosystem carbon balance at a commercial Miscanthus plantation

Author:

Rowe R. L.1ORCID,Cooper H. M.2,Hastings A.3,Mabey A.145,Keith A. M.1,McNamara N. P.1,Morrison R.2ORCID

Affiliation:

1. UK Centre for Ecology and Hydrology Lancaster Environment Centre Lancaster UK

2. UK Centre for Ecology and Hydrology Wallingford UK

3. School of Biological Sciences, Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK

4. Biological Sciences University of Southampton Southampton UK

5. School of Ocean and Earth Science, National Oceanography Centre Southampton University of Southampton Southampton UK

Abstract

AbstractPerennial bioenergy crops are a key tool in decarbonizing global energy systems, but to ensure the efficient use of land resources, it is essential that yields and crop longevity are maximized. Remedial shallow surface tillage is being explored in commercial Miscanthus plantations as an approach to reinvigorate older crops and to rectify poor establishment, improving yields. There are posited links, however, between tillage and losses in soil carbon (C) via increased ecosystem C fluxes to the atmosphere. As Miscanthus is utilized as an energy crop, changes in field C fluxes need to be assessed as part of the C balance of the crop. Here, for the first time, we quantify the C impacts of remedial tillage at a mature commercial Miscanthus plantation in Lincolnshire, United Kingdom. Net ecosystem C production based on eddy covariance flux observations and exported yield totalled 12.16 Mg C ha−1 over the 4.6 year period after tillage, showing the site functioned as a net sink for atmospheric carbon dioxide (CO2). There was no indication of negative tillage induced impacts on soil C stocks, with no difference 3 years post tillage in the surface (0–30 cm) or deep (0–70 cm) soil C stocks between the tilled Miscanthus field and an adjacent paired untilled Miscanthus field. Comparison to historic samples showed surface soil C stocks increased by 11.16 ± 3.91 Mg C ha−1 between pre (October 2011) and post tillage sampling (November 2016). Within the period of the study, however, the tillage did not result in the increased yields necessary to “pay back” the tillage induced yield loss. Rather the crop was effectively re‐established, with progressive yield increases over the study period, mirroring expectations of newly planted sites. The overall impacts of remedial tillage will depend therefore, on the longer‐term impacts on crop longevity and yields.

Funder

Biotechnology and Biological Sciences Research Council

Energy Technologies Institute

Engineering and Physical Sciences Research Council

Natural Environment Research Council

Publisher

Wiley

Subject

Waste Management and Disposal,Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3