Interaction between magnetite and inoculum characteristics in accelerating methane production kinetics

Author:

Al‐Essa Ethar M.1,Bello‐Mendoza Ricardo1ORCID,Wareham David G.1

Affiliation:

1. Department of Civil and Natural Resources Engineering University of Canterbury Christchurch New Zealand

Abstract

AbstractMagnetite nanoparticles can boost methane production via direct interspecies electron transfer. However, the combined effect of inoculum and particle characteristics on magnetite's methanogenesis stimulation is poorly understood. Here, the influence of inoculum type, particle size, and particle concentration on the ability of magnetite to accelerate methanogenesis was studied in batch anaerobic digestion experiments. Fresh and degassed mesophilic digester sludge was used as inoculum, representing methanogenic communities in the exponential or stationary growth and endogenous decay phases, respectively. Three magnetite particle size ranges, small (50–150 nm), medium (168–490 nm), and large (800 nm–4.5 μm), at two different concentrations (2 and 7 mM) were used. With degassed sludge, the effect of magnetite on the methane production rate was weak and depended on the particle size and concentration. Only magnetite of medium size at both 2 and 7 mM significantly increased the methane production rate by 12% compared to the control with no magnetite. The lag phase was reduced by 17% compared to the control, only with 2 mM of both small and medium size magnetite. Conversely, adding magnetite into fresh sludge significantly increased the methane production rate by an average of 32% while simultaneously decreasing the lag phase by 15%–40%, as compared to the control, independently of the magnetite's size and concentration. The stimulation of methane production depends on magnetite and inoculum characteristics.

Publisher

Wiley

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3