Hyperforin ameliorates neuroinflammation and white matter lesions by regulating microglial VEGFR2/SRC pathway in vascular cognitive impairment mice

Author:

Gao Xin1ORCID,Chen Jingjing1,Yin Ge1,Liu Yanqun1,Gu Zhengsheng1,Sun Rui1,Sun Xu1,Jiao Xuehao1,Wang Ling1,Wang Nuo1,Zhang Yanbo2,Kan Yuting1,Bi Xiaoying1,Du Bingying1ORCID

Affiliation:

1. Department of Neurology, Shanghai Changhai Hospital Second Military Medical University/Naval Medical University Shanghai China

2. Department of Psychiatry, Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada

Abstract

AbstractAimTo explore the neuroprotective potential of hyperforin and elucidate its underlying molecular mechanisms involved in its therapeutic effects against vascular cognitive impairment (VCI).MethodsThe active compounds and possible targets of Hypericum perforatum L. that may be effective against VCI were found by network pharmacology in this research. We utilized bilateral common carotid artery occlusion (BCCAO) surgery to induce a VCI mouse model. Morris water maze (MWM) and Y‐maze tests were used to assess VCI mice's cognitive abilities following treatment with hyperforin. To evaluate white matter lesions (WMLs), we utilized Luxol fast blue (LFB) stain and immunofluorescence (IF). Neuroinflammation was assessed using IF, western blot (WB), and enzyme‐linked immunosorbent assay (ELISA). The effects of hyperforin on microglia were investigated by subjecting the BV2 microglial cell line to oxygen–glucose deprivation/reperfusion (OGD/R) stimulation. The expressions of VEGFR2, p‐SRC, SRC, VEGFA, and inflammatory markers including IL‐10, IL‐1β, TNF‐α, and IL‐6 were subsequently assessed.ResultsThe VEGFR2/SRC signaling pathway is essential for mediating the protective properties of hyperforin against VCI according to network pharmacology analysis. In vivo findings demonstrated that hyperforin effectively improved BCCAO‐induced cognitive impairment. Furthermore, staining results showed that hyperforin attenuated WMLs and reduced microglial activation in VCI mice. The hyperforin treatment group's ELISA results revealed a substantial decrease in IL‐1β, IL‐6, and TNF‐α levels. According to the results of in vitro experiments, hyperforin decreased the release of pro‐inflammatory mediators (TNF‐α, IL‐6, and IL‐1β) and blocked microglial M1‐polarization by modulating the VEGFR2/SRC signaling pathway.ConclusionHyperforin effectively modulated microglial M1 polarization and neuroinflammation by inhibiting the VEGFR2/SRC signaling pathways, thereby ameliorating WMLs and cognitive impairment in VCI mice.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3