Unravelling the genetic basis and regulation networks related to fibre quality improvement using chromosome segment substitution lines in cotton

Author:

Qi Guoan12ORCID,Si Zhanfeng2,Xuan Lisha2ORCID,Han Zegang2ORCID,Hu Yan12ORCID,Fang Lei12ORCID,Dai Fan2,Zhang Tianzhen12ORCID

Affiliation:

1. Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City Sanya Hainan China

2. The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University Hangzhou Zhejiang China

Abstract

SummaryThe elucidation of genetic architecture and molecular regulatory networks underlying complex traits remains a significant challenge in life science, largely due to the substantial background effects that arise from epistasis and gene–environment interactions. The chromosome segment substitution line (CSSL) is an ideal material for genetic and molecular dissection of complex traits due to its near‐isogenic properties; yet a comprehensive analysis, from the basic identification of substitution segments to advanced regulatory network, is still insufficient. Here, we developed two cotton CSSL populations on the Gossypium hirsutum background, representing wide adaptation and high lint yield, with introgression from G. barbadense, representing superior fibre quality. We sequenced 99 CSSLs that demonstrated significant differences from G. hirsutum in fibre, and characterized 836 dynamic fibre transcriptomes in three crucial developmental stages. We developed a workflow for precise resolution of chromosomal substitution segments; the genome sequencing revealed substitutions collectively representing 87.25% of the G. barbadense genome. Together, the genomic and transcriptomic survey identified 18 novel fibre‐quality‐related quantitative trait loci with high genetic contributions and the comprehensive landscape of fibre development regulation. Furthermore, analysis determined unique cis‐expression patterns in CSSLs to be the driving force for fibre quality alteration; building upon this, the co‐expression regulatory network revealed biological relationships among the noted pathways and accurately described the molecular interactions of GhHOX3, GhRDL1 and GhEXPA1 during fibre elongation, along with reliable predictions for their interactions with GhTBA8A5. Our study will enhance more strategic employment of CSSL in crop molecular biology and breeding programmes.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3