Fast Increased Fidelity Samplers for Approximate Bayesian Gaussian Process Regression

Author:

Moran Kelly R.1,Wheeler Matthew W.23

Affiliation:

1. Los Alamos National Laboratory , Los Alamos , USA

2. NIEHS , Research Triangle Park , USA

3. NIH , Research Triangle Park , USA

Abstract

Abstract Gaussian processes (GPs) are common components in Bayesian non-parametric models having a rich methodological literature and strong theoretical grounding. The use of exact GPs in Bayesian models is limited to problems containing several thousand observations due to their prohibitive computational demands. We develop a posterior sampling algorithm using H-matrix approximations that scales at O(nlog2n). We show that this approximation's Kullback–Leibler divergence to the true posterior can be made arbitrarily small. Although multidimensional GPs could be used with our algorithm, d-dimensional surfaces are modelled as tensor products of univariate GPs to minimize the cost of matrix construction and maximize computational efficiency. We illustrate the performance of this fast increased fidelity approximate GP, FIFA-GP, using both simulated and non-synthetic data sets.

Funder

Department of Energy Computational Science Graduate Fellowship

National Institute of Environmental Health Sciences

Laboratory Directed Research and Development program of Los Alamos National Laboratory

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference59 articles.

1. An O(nlogn) fast direct solver for partial hierarchically semi-separable matrices;Ambikasaran;Journal of Scientific Computing,2013

2. Fast direct methods for Gaussian processes;Ambikasaran;IEEE Transactions on Pattern Analysis and Machine Intelligence,2015

3. Hodlrlib: a library for hierarchical matrices;Ambikasaran;The Journal of Open Source Software,2019

4. Gaussian predictive process models for large spatial data sets;Banerjee;Journal of the Royal Statistical Society: Series B (Statistical Methodology),2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of geospatial exposure models and approaches for health data integration;Journal of Exposure Science & Environmental Epidemiology;2024-09-06

2. Optimal Composite Likelihood Estimation and Prediction for Distributed Gaussian Process Modeling;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3