The nuclear effector MoHTR3 of Magnaporthe oryzae modulates host defence signalling in the biotrophic stage of rice infection

Author:

Lee Sehee1,Völz Ronny2ORCID,Lim You‐Jin2,Harris William1,Kim Seongbeom1,Lee Yong‐Hwan12345ORCID

Affiliation:

1. Department of Agricultural Biotechnology Seoul National University Seoul South Korea

2. Research Institute of Agriculture and Life Sciences Seoul National University Seoul South Korea

3. Center for Fungal Genetic Resources Seoul National University Seoul South Korea

4. Plant Immunity Research Center Seoul National University Seoul South Korea

5. Plant Genomics and Breeding Institute Seoul National University Seoul South Korea

Abstract

AbstractFungal effectors play a pivotal role in suppressing the host defence system, and their evolution is highly dynamic. By comparative sequence analysis of plant‐pathogenic fungi and Magnaporthe oryzae, we identified the small secreted C2H2 zinc finger protein MoHTR3. MoHTR3 exhibited high conservation in M. oryzae strains but low conservation among other plant‐pathogenic fungi, suggesting an emerging evolutionary selection process. MoHTR3 is exclusively expressed in the biotrophic stage of fungal invasion, and the encoded protein localizes to the biotrophic interfacial complex (BIC) and the host cell nucleus. The signal peptide crucial for MoHTR3′ secretion to the BIC and the protein section required for its translocation to the nucleus were both identified by a functional protein domain study. The host‐nuclear localization of MoHTR3 suggests a function as a transcriptional modulator of host defence gene induction. After ΔMohtr3 infection, the expression of jasmonic acid‐ and ethylene‐associated genes was diminished in rice, in contrast to when the MoHTR3‐overexpressing strain (MoHTR3ox) was applied. The transcript levels of salicylic acid‐ and defence‐related genes were also affected after ΔMohtr3 and MoHTR3ox application. In pathogenicity assays, ΔMohtr3 was indistinguishable from the wild type. However, MoHTR3ox‐infected plants showed diminished lesion formation and hydrogen peroxide accumulation, accompanied by a decrease in susceptibility, suggesting that the MoHTR3‐induced manipulation of host cells affects host–pathogen interaction. MoHTR3 emphasizes the role of the host nucleus as a critical target for the pathogen‐driven manipulation of host defence mechanisms and underscores the ongoing evolution of rice blast's arms race.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Plant Science,Soil Science,Agronomy and Crop Science,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3