Intraspecific genetic divergence of the subalpine shrubby variety Quercus crispula var. horikawae from the mountain tree variety Q. crispula var. crispula in Japan

Author:

San Jose‐Maldia Lerma12ORCID,Matsumoto Asako1ORCID,Nagamitsu Teruyoshi1ORCID,Ueno Saneyoshi1ORCID,Tsumura Yoshihiko3ORCID

Affiliation:

1. Forestry and Forest Products Research Institute, Forest Research and Management Organization Ibaraki Japan

2. College of Forestry and Natural Resources, University of the Philippines Los Baños Los Baños Philippines

3. Faculaty of Life and Environmental Sciences University of Tsukuba Ibaraki Japan

Abstract

AbstractEcotypic divergence in tree taxa often occurs in subalpine habitats, where environmental conditions are more stressful than those in lower elevations. In the white oak species in Japan Quercus crispula, the subalpine shrubby variety Q. crispula var. horikawae (Qch) has been recognized in central and northern Honshu. Although Qch has different phenotypes from Q. crispula var. crispula (Qcc), genetic divergence between Qcc and Qch has not been examined yet. Pairs of Qcc and Qch populations in eight locations and additional Qcc and Qch populations around these locations were investigated. Leaf size of Qch was smaller than that of Qcc. Chloroplast DNA haplotypes were shared between the Qcc and Qch populations. In genotypes at 29 nuclear microsatellite loci, genetic diversity did not differ between the Qcc and Qch populations. Principal component analysis and a neighbor‐joining tree of populations based on the genotypes demonstrated that 13 Qcc populations and eight Qch populations were grouped separately, except for three Qch populations that were grouped to Qcc. Climatic conditions in the eight Qch populations were characterized by lower temperature and heavier snowfall than those in the 16 populations of the genetic group of Qcc. These results suggest genetic divergence between Qcc and Qch associated with subalpine climatic conditions, irrespective of leaf size. The origin of the subalpine Qch lineage and the history of ecotypic divergence should be investigated in future genomic studies.

Funder

Ministry of Environment

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3