Clonal integration facilitates the expansion of Hydrocotyle vulgaris from a limited space to a larger area

Author:

Zhao Bing‐Nan1,Chen Zhi‐Huan2,Liu Zhi‐Hang1,He Xue‐Ge1,Chen Zi‐Qi1,Gu Xin‐Yue1,Si Chao1ORCID

Affiliation:

1. School of Life Science and Engineering Handan University Handan China

2. School of Special Education Handan University Handan China

Abstract

AbstractClonal integration is an important ecological advantage of clonal plants. To ask whether clonal integration can help invasive plants escape space limitations, we tested the hypothesis that it can promote the growth of apical ramets when their connected basal ramets grow in limited space. We conducted a greenhouse experiment on the common perennial herb Hydrocotyle vulgaris. Clonal fragments consisting of pairs of connected ramets grew with basal ramets in three different sizes of pots (small, medium, and large) and apical ramets in large pots, and the connection between ramets was either severed or left intact. Pot size significantly affected the growth of basal ramets such that the biomass, number of leaves and flowers, and stolon length were in general greater in medium pots than in large and small pots when stolons were intact and were greater in medium and large pots than in small pots when stolons were severed. Furthermore, pot size interacted with severance to affect the performance of H. vulgaris. When the basal ramets grew in small pots, the intact stolon resulted in a significant promotion of apical ramet growth, but such positive effect was not found when the basal ramets grew in medium and large pots. Our results suggest that H. vulgaris is able to promote the growth of apical ramets to occupy the surrounding areas through clonal integration when the space where basal ramets grow is limited.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3