An effective graph embedded YOLOv5 model for forest fire detection

Author:

Yuan Hui1,Lu Zhumao1,Zhang Ruizhe2,Li Jinsong1ORCID,Wang Shuai1,Fan Jingjing1

Affiliation:

1. State Grid Shanxi Electric Power Research Institute Taiyuan China

2. State Grid Beijing Electric Power Research Institute Beijing China

Abstract

AbstractThe existing YOLOv5‐based framework has achieved great success in the field of target detection. However, in forest fire detection tasks, there are few high‐quality forest fire images available, and the performance of the YOLO model has suffered a serious decline in detecting small‐scale forest fires. Making full use of context information can effectively improve the performance of small target detection. To this end, this paper proposes a new graph‐embedded YOLOv5 forest fire detection framework, which can improve the performance of small‐scale forest fire detection using different scales of context information. To mine local context information, we design a spatial graph convolution operation based on the message passing neural network (MPNN) mechanism. To utilize global context information, we introduce a multi‐head self‐attention (MSA) module before each YOLO head. The experimental results on FLAME and our self‐built fire dataset show that our proposed model improves the accuracy of small‐scale forest fire detection. The proposed model achieves high performance in real‐time performance by fully utilizing the advantages of the YOLOv5 framework.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3