A semantically enhanced text retrieval framework with abstractive summarization

Author:

Pan Min12,Li Teng1,Liu Yu1,Pei Quanli2,Huang Ellen Anne3,Huang Jimmy X.2ORCID

Affiliation:

1. School of Computer and Information Engineering Hubei Normal University Huangshi China

2. Information Retrieval and Knowledge Management Research Lab, School of Information Technology York University Toronto Canada

3. Department of Computer Science Western University London Canada

Abstract

AbstractRecently, large pretrained language models (PLMs) have led a revolution in the information retrieval community. In most PLMs‐based retrieval frameworks, the ranking performance broadly depends on the model structure and the semantic complexity of the input text. Sequence‐to‐sequence generative models for question answering or text generation have proven to be competitive, so we wonder whether these models can improve ranking effectiveness by enhancing input semantics. This article introduces SE‐BERT, a semantically enhanced bidirectional encoder representation from transformers (BERT) based ranking framework that captures more semantic information by modifying the input text. SE‐BERT utilizes a pretrained generative language model to summarize both sides of the candidate passage and concatenate them into a new input sequence, allowing BERT to acquire more semantic information within the constraints of the input sequence's length. Experimental results from two Text Retrieval Conference datasets demonstrate that our approach's effectiveness increasing as the length of the input text increases.

Funder

China Scholarship Council

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Artificial Intelligence,Computational Mathematics

Reference42 articles.

1. DevlinJ ChangM‐W LeeK ToutanovaK.BERT: pre‐training of deep bidirectional transformers for language understanding. Proceedings of the 17th Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies(NAACL‐HLT'19); 2019:4171‐4186.

2. NogueiraR ChoK.Passage re‐ranking with BERT. arXiv Preprint arXiv:1901.04085; 2019.

3. THE PROBABILITY RANKING PRINCIPLE IN IR

4. ZhaoJ HuangJX BenH.CRTER: Using cross terms to enhance probabilistic information retrieval. Proceedings of the 34th International ACM SIGIR conference on research and development in Information Retrieval; 2011:155‐164.

5. ZhaoJ HuangJX YeZ.Modeling term associations for probabilistic information retrieval. ACM Transactions on Information Systems (TOIS) vol. 32: 1‐47.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3