Robust colored point cloud alignment based on L*a*b* guided and Cauchy kernel

Author:

Wan Teng1ORCID,Du Shaoyi2,Zhang Qiang1,Qi Ying1,Huang Chunyao34,Zeng Wei3

Affiliation:

1. College of Computer Science and Engineering Northwest Normal University Lanzhou Gansu China

2. Institute of Artificial Intelligence and Robotics, College of Artificial Intelligence Xi'an Jiaotong University Xi'an Shaanxi China

3. Department of Computer The Open University of Longyan Longyan Fujian China

4. School of Physics and Mechanical and Electrical Engineering Longyan University Longyan Fujian China

Abstract

AbstractPrecision agriculture benefits from point set registration, which can monitor plant health and growth in real time, promote the precise application of fertilizers and pesticides, and provide technical support for achieving sustainable development of agriculture. In this work, we propose a robust point set registration method for precision agriculture based on L*a*b* color guidance, bidirectional search and Cauchy distribution. First, the L*a*b* color guidance is applied to establish accurate correspondences between agricultural RGB‐D data. Second, the bidirectional nearest neighbor search strategy between point sets improves the reliability of establishing correspondences and broadens the convergence domain of the algorithm. Third, Cauchy distribution is utilized as an energy function for noise suppression, which further improves the robustness of the algorithm in dealing with complex vegetation scenes. Finally, results of ablation and simulation experiments indicate that the proposed registration algorithm can achieve more accurate and robust alignment results than other classic and state‐of‐the‐art point cloud registration algorithms to achieve monitoring and comparison of plant growth.

Funder

National Natural Science Foundation of China

Science and Technology Program of Gansu Province

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3