XAI‐driven model for crop recommender system for use in precision agriculture

Author:

Naga Srinivasu Parvathaneni12ORCID,Ijaz Muhammad Fazal3,Woźniak Marcin4

Affiliation:

1. Department of Computer Science and Engineering Prasad V Potluri Siddhartha Institute of Technology Vijayawada Andhra Pradesh India

2. Department of Teleinformatics Engineering Federal University of Ceará Fortaleza Brazil

3. School of IT and Engineering Melbourne Institute of Technology Melbourne Australia

4. Faculty of Applied Mathematics Silesian University of Technology Kaszubska 23, Gliwice Poland

Abstract

AbstractAgriculture serves as the predominant driver of a country's economy, constituting the largest share of the nation's manpower. Most farmers are facing a problem in choosing the most appropriate crop that can yield better based on the environmental conditions and make profits for them. As a consequence of this, there will be a notable decline in their overall productivity. Precision agriculture has effectively resolved the issues encountered by farmers. Today's farmers may benefit from what's known as precision agriculture. This method takes into account local climate, soil type, and past crop yields to determine which varieties will provide the best results. The explainable artificial intelligence (XAI) technique is used with radial basis functions neural network and spider monkey optimization to classify suitable crops based on the underlying soil and environmental conditions. The XAI technology would provide assets in better transparency of the prediction model on deciding the most suitable crops for their farms, taking into account a variety of geographical and operational criteria. The proposed model is assessed using standard metrics like precision, recall, accuracy, and F1‐score. In contrast to other cutting‐edge approaches discussed in this study, the model has shown fair performance with approximately 12% better accuracy than the other models considered in the current study. Similarly, precision has improvised by 10%, recall by 11%, and F1‐score by 10%.

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3