Application of concept drift detection and adaptive framework for non linear time series data from cardiac surgery

Author:

Ganesan Rajarajan1,Kaur Tarunpreet2,Mittal Alisha1,Sahi Mansi2,Konar Sushant1,Samra Tanvir1,Puri Goverdhan Dutt1,Thingnum Shayam Kumar Singh3,Auluck Nitin2

Affiliation:

1. Department of Anaesthesia and Intensive Care Post Graduate Institute of Medical Education and Research Chandigarh India

2. Department of Computer Science and Engineering Indian Institute of Technology Ropar India

3. Department of Cardiovascular and Thoracic Surgery Post Graduate Institute of Medical Education and Research Chandigarh India

Abstract

AbstractThe quality of machine learning (ML) models deployed in dynamic environments tends to decline over time due to disparities between the data used for training and the upcoming data available for prediction, which is commonly known as drift. Therefore, it is important for ML models to be capable of detecting any changes or drift in the data distribution and updating the ML model accordingly. This study presents various drift detection techniques to identify drift in the survival outcomes of patients who underwent cardiac surgery. Additionally, this study proposes several drift adaptation strategies, such as adaptive learning, incremental learning, and ensemble learning. Through a detailed analysis of the results, the study confirms the superior performance of ensemble model, achieving a minimum mean absolute error (MAE) of 10.684 and 2.827 for predicting hospital stay and ICU stay, respectively. Furthermore, the models that incorporate a drift adaptive framework exhibit superior performance compared to the models that do not include such a framework.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Indian Council of Medical Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3