Novel mixture allocation models for topic learning

Author:

Maanicshah Kamal1,Amayri Manar2,Bouguila Nizar1

Affiliation:

1. Concordia Institute of Information and Systems Engineering Concordia University Quebec Canada

2. G‐SCOP Lab Grenoble Institute of Technology Grenoble France

Abstract

AbstractLatent Dirichlet allocation (LDA) is one of the major models used for topic modelling. A number of models have been proposed extending the basic LDA model. There has also been interesting research to replace the Dirichlet prior of LDA with other pliable distributions like generalized Dirichlet, Beta‐Liouville and so forth. Owing to the proven efficiency of using generalized Dirichlet (GD) and Beta‐Liouville (BL) priors in topic models, we use these versions of topic models in our paper. Furthermore, to enhance the support of respective topics, we integrate mixture components which gives rise to generalized Dirichlet mixture allocation and Beta‐Liouville mixture allocation models respectively. In order to improve the modelling capabilities, we use variational inference method for estimating the parameters. Additionally, we also introduce an online variational approach to cater to specific applications involving streaming data. We evaluate our models based on its performance on applications related to text classification, image categorization and genome sequence classification using a supervised approach where the labels are used as an observed variable within the model.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3