Affiliation:
1. Key Laboratory of Ministry of Education for Trauma Treatment and Nerve Regeneration, National Center for Trauma Medicine, Department of Orthopaedics and Traumatology Peking University People's Hospital Beijing China
2. Department of Orthopaedics Peking Union Medical College Hospital Beijing China
3. Department of Orthopaedics Tianjin Fifth Central Hospital Tianjin China
4. Department of Orthopaedics Tianjin Hospital Tianjin China
Abstract
ObjectiveCompared with total hip replacement, conventional collum femoris preserving prosthesis has a better bone retention effect. However, damage to the trabecular bone of the proximal femur leads to inevitable abnormal stress distribution, which leads to increased risks of femoral neck bone absorption, periprosthetic fracture, prosthesis loosening, rotation, and sinking. Thus, we compare the biomechanical properties of collum femoris preserving (CFP) and bionic collum femoris preserving (BCFP) hip prostheses.MethodsThe Sawbone digital model (#3503, left, medium) was selected as the research object. We used the Mimics 21.0 software to reconstruct the digital model of the femur and the SolidWorks 2019 software to build and assemble the three‐dimensional models of CFP and BCFP prostheses. With the ANSYS Workbench 2021R1 software, the models were meshed and assigned values to simulate the load of a single foot under slow walking. We measured the mechanical distribution of the whole model and obtained the stress nephogram.ResultsFor CFP prosthesis, the peak stresses of the medial interface of the stem neck, the lateral interface of the stem neck, and the end of the stem were 64.894, 32.199, and 8.578 MPa, respectively; the peak stresses of the medial surface of the femoral shaft, the lateral surface of femoral shaft, the medial femoral neck bone‐prosthesis interface (osteotomy interface), the lateral femoral neck bone‐prosthesis interface (basal area), the lateral femoral neck bone‐prosthesis interface (osteotomy interface), and the greater trochanter area were 28.093, 24.790, 14.388, 5.118, 4.179, and 8.245 MPa, respectively; the valley stress of the greater trochanter area was 1.134 MPa. For BCFP prosthesis, the peak stresses of the medial interface of the stem neck, the lateral interface of the stem neck, and the end of the stem were 47.015, 26.771, and 47.593 MPa, respectively; the peak stress of tension screw was 15.739 MPa; the peak stresses of the medial surface of the femoral shaft, the lateral surface of femoral shaft, the medial femoral neck bone‐prosthesis interface (osteotomy interface), the lateral femoral neck bone‐prosthesis interface (basal area), the lateral femoral neck bone‐prosthesis interface (osteotomy interface) and the greater trochanter area were 28.581, 25.364, 15.624, 6.434, 4.986, and 8.796 MPa, respectively; the valley stress of the greater trochanter area was 1.419 MPa; the peak stress of bone‐metal interface between the tension screw and the lateral surface of the femur was 5.858 MPa.ConclusionCompared with the CFP prosthesis, the design of the BCFP prosthesis is based on the lever balance theory. With the bionic reconstruction of tension trabeculae, BCFP prosthesis makes up for the defects of CFP prosthesis design, optimizes the stress distribution, and reduces the stress shelter effect of the proximal femur, which has better biomechanical properties.
Funder
National Key Research and Development Program of China
Subject
Orthopedics and Sports Medicine,Surgery