Rheumatoid arthritis synovial microenvironment induces metabolic and functional adaptations in dendritic cells

Author:

Canavan M12ORCID,Marzaioli V12,McGarry T1,Bhargava V3,Nagpal S3,Veale D J2,Fearon U12ORCID

Affiliation:

1. Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland

2. Centre for Arthritis and Rheumatic Diseases, EULAR Centre of Excellence, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland

3. Immunology, Janssen Research & Development, Spring House, PA, USA

Abstract

Summary Rheumatoid arthritis (RA) is a chronic autoimmune disease which causes degradation of cartilage and bone. It is well appreciated that the pathogenic hallmark of RA is the mass influx of inflammatory cells into the joint. However, the role that dendritic cells (DC) may play in this inflammatory milieu is still relatively unexplored. Moreover, the contribution this unique synovial microenvironment has on DC maturation is still unknown. Using monocyte-derived DC (MoDC), we established an in-vitro model to recapitulate the synovial microenvironment to explore DC maturation. MoDC treated with conditioned media from ex-vivo synovial tissue biopsy cultures [explant-conditioned media (ECM)] have increased expression of proinflammatory cytokines, chemokines and adhesion molecules. ECM DC have increased expression of CD83 and CC-chemokine receptor (CCR)7 and decreased expression of CCR5 and phagocytic capacity, suggestive of heightened DC maturation. ECM-induced maturation is concomitant with altered cellular bioenergetics, whereby increased expression of glycolytic genes and increased glucose uptake are observed in ECM DC. Collectively, this results in a metabolic shift in DC metabolism in favour of glycolysis. These adaptations are in-part mediated via signal transducer and activator of transcription-3 (STAT-3), as demonstrated by decreased expression of proinflammatory cytokines and glycolytic genes in ECM DC in response to STAT-3 inhibition. Finally, to translate these data to a more in-vivo clinically relevant setting, RNA-seq was performed on RA synovial fluid and peripheral blood. We identified enhanced expression of a number of glycolytic genes in synovial CD1c+ DC compared to CD1c+ DC in circulation. Collectively, our data suggest that the synovial microenvironment in RA contributes to DC maturation and metabolic reprogramming.

Funder

Centre for Arthritis and Rheumatic Diseases

Irish Research Council

Arthritis Ireland

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3