Maternal ploidy shapes reproductive pathways in the triploid hybrid Chrosomus eos × eos‐neogaeus

Author:

Lafond Joëlle1ORCID,Angers Bernard1ORCID

Affiliation:

1. Department of Biological Sciences Université de Montréal Montreal Quebec Canada

Abstract

AbstractElements transferred from a mother to her eggs may strongly influence the phenotype of her offspring. Such maternal effects depend on the genotype of the mother, and while multiple ploidy levels occur naturally in some vertebrate species, studies evaluating the impact of maternal ploidy on offspring are scarce. This paper aimed to test whether maternal ploidy is responsible for the two reproductive phenotypes observed in the triploid fish Chrosomus eos × eos‐neogaeus. Indeed, these hybrids have two different maternal origins (diploid or triploid) and display two reproductive phenotypes, ameiotic and meiotic hybridogenesis, resulting in diploid and haploid eggs, respectively. To this end, we first conducted a genomic survey to identify epigenetic variations in triploid larvae reared under common garden conditions, concordantly with their maternal origin. The results revealed that the polymorphic epigenetic loci of the larvae clustered into two highly distinct groups consistently with the ploidy of their mother. Diagnostic epigenetic loci were then tested in triploid adult females whose reproductive pathways were already known, to infer their own maternal origin. Altogether, the results suggest that triploid larvae from diploid and triploid mothers will develop the ameiotic and meiotic hybridogenesis pathway, respectively. This confirms that the development of a given reproductive pathway in triploid females results from the ploidy of their mother. Overall, this study supports a strong maternal effect, introducing maternal ploidy and reproductive pathways as additional cause and effect of maternal effects, respectively.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3