A multiangle polarised imaging‐based method for thin section segmentation

Author:

Chen Yan12,Yi Yu1ORCID,Dai Yongfang3,Shi Xiangchao4

Affiliation:

1. School of Computer Science Southwest Petroleum University Chengdu Sichuan China

2. Research Center for Smart Oil and Gas Field Southwest Petroleum University Chengdu Sichuan China

3. School of Computer and Software Chengdu Neusoft University Chengdu Sichuan China

4. Petroleum Engineering School Southwest Petroleum University Chengdu Sichuan China

Abstract

AbstractThe most crucial task of petroleum geology is to explore oil and gas reservoirs in the deep underground. As one of the analysis techniques in petroleum geological research, rock thin section identification method includes particle segmentation, which is one of the key steps. A conventional sandstone thin section image typically contains hundreds of mineral particles with blurred boundaries and complex microstructures inside the particles. Moreover, the complex lithology and low porosity of tight sandstone make traditional image segmentation methods unsuitable for solving the complex thin section segmentation problems. This paper combines petrology and image processing technologies. First, polarised sequence images are aligned, and then the images are transformed to the HSV colour space to extract pores. Second, particles are extracted according to their extinction characteristics. Last, a concavity and corner detection matching method is used to process the extracted particles, thereby completing the segmentation of sandstone thin section images. The experimental results show that our proposed method can more accurately fit the boundaries of mineral particles in sandstone images than existing image segmentation methods. Additionally, when applied in actual production scenarios, our method exhibits excellent performance, greatly improving thin section identification efficiency and significantly assisting experts in identification.

Publisher

Wiley

Subject

Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3