Coordinated histone variant H2A.Z eviction and H3.3 deposition control plant thermomorphogenesis

Author:

Zhao Fengyue12,Xue Mande12ORCID,Zhang Huairen1ORCID,Li Hui12,Zhao Ting1ORCID,Jiang Danhua12ORCID

Affiliation:

1. State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology The Innovative Academy for Seed Design, Chinese Academy of Sciences Beijing 100101 China

2. University of Chinese Academy of Sciences Beijing 100039 China

Abstract

Summary Plants can sense temperature changes and adjust their development and morphology accordingly in a process called thermomorphogenesis. This phenotypic plasticity implies complex mechanisms regulating gene expression reprogramming in response to environmental alteration. Histone variants often associate with specific chromatin states; yet, how their deposition/eviction modulates transcriptional changes induced by environmental cues remains elusive. In Arabidopsis thaliana, temperature elevation‐induced transcriptional activation at thermo‐responsive genes entails the chromatin eviction of a histone variant H2A.Z by INO80, which is recruited to these loci via interacting with a key thermomorphogenesis regulator PIF4. Here, we show that both INO80 and the deposition chaperones of another histone variant H3.3 associate with ELF7, a critical component of the transcription elongator PAF1 complex. H3.3 promotes thermomorphogenesis and the high temperature‐enhanced RNA Pol II transcription at PIF4 targets, and it is broadly required for the H2A.Z removal‐induced gene activation. Reciprocally, INO80 and ELF7 regulate H3.3 deposition, and are necessary for the high temperature‐induced H3.3 enrichment at PIF4 targets. Our findings demonstrate close coordination between H2A.Z eviction and H3.3 deposition in gene activation induced by high temperature, and pinpoint the importance of histone variants dynamics in transcriptional regulation.

Funder

Chinese Academy of Sciences

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3