Editorial Perspective: Extending IPDMA methodology to drive treatment personalisation in child mental health

Author:

Bertie Lizél‐Antoinette12ORCID,Nauta Maaike H.3ORCID,Kooiman Bas34ORCID,Chen Wenting2ORCID,Hudson Jennifer L.12ORCID

Affiliation:

1. School of Psychology University of New South Wales Sydney NSW Australia

2. Black Dog Institute University of New South Wales Sydney NSW Australia

3. Department of Clinical Psychology and Experimental Psychopathology, Faculty of Behavioural and Social Sciences University of Groningen Groningen The Netherlands

4. Depression Expertise Centre‐Youth GGZ Oost Brabant Boekel The Netherlands

Abstract

To improve outcomes for youth who do not respond optimally to existing treatments, we need to identify robust predictors, moderators, and mediators that are ideal targets for personalisation in mental health care. We propose a solution to leverage the Individual Patient Data Meta‐analysis (IPDMA) approach to allow broader access to individual‐level data while maintaining methodological rigour. Such a resource has the potential to answer questions that are unable to be addressed by single studies, reduce researcher burden, and enable the application of newer statistical techniques, all to provide data‐driven strategies for clinical decision‐making. Using childhood anxiety as the worked example, the editorial perspective outlines the rationale for leveraging IPDMA methodology to build a data repository, the Platform for Anxiety Disorder Data in Youth. We also include recommendations to address the methods and challenges inherent in this endeavour.

Funder

National Health and Medical Research Council

Publisher

Wiley

Reference17 articles.

1. A scoping review of machine learning in psychotherapy research;Aafjes‐van Doorn K.;Psychotherapy Research,2021

2. Cognitive behavioral therapy age effects in child and adolescent anxiety: An individual patient data meta‐analysis;Bennett K.;Depression and Anxiety,2013

3. CBT for childhood anxiety: Reviewing the state of personalised intervention research;Bertie L.‐A.;Frontiers in Psychology,2021

4. A practical guide to big data research in psychology;Chen E.E.;Psychological Methods,2016

5. Secondary analysis of existing data: Opportunities and implementation;Cheng H.G.;Shanghai Archives of Psychiatry,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3