Fimbria targeting superparamagnetic iron oxide nanoparticles enhance the antimicrobial and antibiofilm activity of ciprofloxacin against quinolone‐resistant E. coli

Author:

Atac Nazli12ORCID,Onbasli Kubra3,Koc Irem4,Yagci Acar Havva45,Can Fusun12

Affiliation:

1. School of Medicine, Medical Microbiology Koç University Istanbul Turkey

2. Koç University‐İşbank Center for Infectious Diseases (KUISCID) Istanbul Turkey

3. Department of Metallurgical and Materials Engineering İstanbul Technical University Istanbul Turkey

4. Graduate School of Materials Science and Engineering Koç University Istanbul Turkey

5. Department of Chemistry Koç University Istanbul Turkey

Abstract

AbstractHigh quinolone resistance of Escherichia coli limits the therapy options for urinary tract infection (UTI). In response to the urgent need for efficient treatment of multidrug‐resistant infections, we designed a fimbriae targeting superparamagnetic iron oxide nanoparticle (SPION) delivering ciprofloxacin to ciprofloxacin‐resistant E. coli. Bovine serum albumin (BSA) conjugated poly(acrylic acid) (PAA) coated SPIONs (BSA@PAA@SPION) were developed for encapsulation of ciprofloxacin and the nanoparticles were tagged with 4‐aminophenyl‐α‐D‐mannopyrannoside (mannoside, Man) to target E. coli fimbriae. Ciprofloxacin‐loaded mannoside tagged nanoparticles (Cip‐Man‐BSA@PAA@SPION) provided high antibacterial activity (97.1 and 97.5%, respectively) with a dose of 32 μg/mL ciprofloxacin against two ciprofloxacin‐resistant E. coli isolates. Furthermore, a strong biofilm inhibition (86.9% and 98.5%, respectively) was achieved in the isolates at a dose 16 and 8 times lower than the minimum biofilm eradication concentration (MBEC) of ciprofloxacin. Weaker growth inhibition was observed with untargeted nanoparticles, Cip‐BSA@PAA@SPIONs, confirming that targeting E. coli fimbria with mannoside‐tagged nanoparticles increases the ciprofloxacin efficiency to treat ciprofloxacin‐resistant E. coli. Enhanced killing activity against ciprofloxacin‐resistant E. coli planktonic cells and strong growth inhibition of their biofilms suggest that Cip‐Man‐BSA@PAA@SPION system might be an alternative and/or complementary therapeutic option for the treatment of quinolone‐resistant E. coli infections.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3