Contribution of machine learning for subspecies identification from Mycobacterium abscessus with MALDI‐TOF MS in solid and liquid media

Author:

Godmer Alexandre12ORCID,Bigey Lise13,Giai‐Gianetto Quentin45,Pierrat Gautier2,Mohammad Noshine6ORCID,Mougari Faiza7,Piarroux Renaud6,Veziris Nicolas128,Aubry Alexandra18

Affiliation:

1. U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi‐Paris) Sorbonne Université Paris France

2. AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), Département de Bactériologie Groupe Hospitalier Universitaire, Sorbonne Université, Hôpital Paris France

3. DER (Département d'Enseignement et de Recherche) de Biologie, ENS Paris‐Saclay Université Paris‐Saclay Gif‐sur‐Yvette France

4. Institut Pasteur Université Paris Cité, Bioinformatics and Biostatistics HUB Paris France

5. Institut Pasteur Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR CNRS 2024 Paris France

6. Inserm, Institut Pierre‐Louis d'Epidémiologie et de Santé Publique, IPLESP, AP‐HP, Groupe Hospitalier Pitié‐Salpêtrière, Service de Parasitologie‐ Mycologie Sorbonne Université Paris France

7. Service de Mycobactériologie spécialisée et de référence, Centre National de Référence des Mycobactéries (Laboratoire associé), APHP GHU Nord Université Paris Cité, INSERM IAME UMR Paris France

8. AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris) Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux Paris France

Abstract

AbstractMycobacterium abscessus (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (M. abscessus, M. bolletii and M. massiliense) is a clinical necessity for guiding treatment decisions. We aimed to assess the potential of Machine Learning (ML)‐based classifiers coupled to Matrix‐Assisted Laser Desorption/Ionization Time‐of‐Flight (MALDI‐TOF) MS to identify MABS subspecies. Two spectral databases were created by using 40 confirmed MABS strains. Spectra were obtained by using MALDI‐TOF MS from strains cultivated on solid (Columbia Blood Agar, CBA) or liquid (MGIT®) media for 1 to 13 days. Each database was divided into a dataset for ML‐based pipeline development and a dataset to assess the performance. An in‐house programme was developed to identify discriminant peaks specific to each subspecies. The peak‐based approach successfully distinguished M. massiliense from the other subspecies for strains grown on CBA. The ML approach achieved 100% accuracy for subspecies identification on CBA, falling to 77.5% on MGIT®. This study validates the usefulness of ML, in particular the Random Forest algorithm, to discriminate MABS subspecies by MALDI‐TOF MS. However, identification in MGIT®, a medium largely used in mycobacteriology laboratories, is not yet reliable and should be a development priority.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3