Modelling the physiological status of yeast during wine fermentation enables the prediction of secondary metabolism

Author:

Moimenta Artai R.12ORCID,Henriques David1ORCID,Minebois Romain3ORCID,Querol Amparo3ORCID,Balsa‐Canto Eva1ORCID

Affiliation:

1. Bioprocess and Biosystems Engineering IIM‐CSIC Vigo Spain

2. Applied Mathematics II University of Vigo Vigo Spain

3. Systems Biology of Yeasts of Biotechnological Interest IATA‐CSIC Paterna Spain

Abstract

AbstractSaccharomyces non‐cerevisiae yeasts are gaining momentum in wine fermentation due to their potential to reduce ethanol content and achieve attractive aroma profiles. However, the design of the fermentation process for new species requires intensive experimentation. The use of mechanistic models could automate process design, yet to date, most fermentation models have focused on primary metabolism. Therefore, these models do not provide insight into the production of secondary metabolites essential for wine quality, such as aromas. In this work, we formulate a continuous model that accounts for the physiological status of yeast, that is, exponential growth, growth under nitrogen starvation and transition to stationary or decay phases. To do so, we assumed that nitrogen starvation is associated with carbohydrate accumulation and the induction of a set of transcriptional changes associated with the stationary phase. The model accurately described the dynamics of time series data for biomass and primary and secondary metabolites obtained for various yeast species in single culture fermentations. We also used the proposed model to explore different process designs, showing how the addition of nitrogen could affect the aromatic profile of wine. This study underlines the potential of incorporating yeast physiology into batch fermentation modelling and provides a new means of automating process design.

Funder

Ministerio de Ciencia, Innovación y Universidades

Ministerio de Economía y Competitividad

Xunta de Galicia

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3