Production of selenium nanoparticles occurs through an interconnected pathway of sulphur metabolism and oxidative stress response in Pseudomonas putida KT2440

Author:

Avendaño Roberto1,Muñoz‐Montero Said2,Rojas‐Gätjens Diego1,Fuentes‐Schweizer Paola34,Vieto Sofía1,Montenegro Rafael1,Salvador Manuel5,Frew Rufus6,Kim Juhyun7,Chavarría Max138ORCID,Jiménez Jose I.2ORCID

Affiliation:

1. Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT‐CONARE San José Costa Rica

2. Department of Life Sciences Imperial College London London UK

3. Escuela de Química Universidad de Costa Rica San José Costa Rica

4. Centro de Electroquímica y Energía Química (CELEQ) Universidad de Costa Rica San José Costa Rica

5. Biotechnology Applications, IDENER Research & Development Seville Spain

6. Department of Chemistry University of Leicester Leicester UK

7. School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group KNU Institute for Microorganisms, Kyungpook National University Daegu Korea

8. Centro de Investigaciones en Productos Naturales (CIPRONA) Universidad de Costa Rica San José Costa Rica

Abstract

AbstractThe soil bacterium Pseudomonas putida KT2440 has been shown to produce selenium nanoparticles aerobically from selenite; however, the molecular actors involved in this process are unknown. Here, through a combination of genetic and analytical techniques, we report the first insights into selenite metabolism in this bacterium. Our results suggest that the reduction of selenite occurs through an interconnected metabolic network involving central metabolic reactions, sulphur metabolism, and the response to oxidative stress. Genes such as sucA, D2HGDH and PP_3148 revealed that the 2‐ketoglutarate and glutamate metabolism is important to convert selenite into selenium. On the other hand, mutations affecting the activity of the sulphite reductase decreased the bacteria's ability to transform selenite. Other genes related to sulphur metabolism (ssuEF, sfnCE, sqrR, sqr and pdo2) and stress response (gqr, lsfA, ahpCF and sadI) were also identified as involved in selenite transformation. Interestingly, suppression of genes sqrR, sqr and pdo2 resulted in the production of selenium nanoparticles at a higher rate than the wild‐type strain, which is of biotechnological interest. The data provided in this study brings us closer to understanding the metabolism of selenium in bacteria and offers new targets for the development of biotechnological tools for the production of selenium nanoparticles.

Funder

Biotechnology and Biological Sciences Research Council

European Commission

Horizon 2020 Framework Programme

Innovate UK

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3