Recombinant production of SAG1 fused with xylanase in Pichia pastoris induced higher protective immunity against Eimeria tenella infection in chicken

Author:

Liu Chen1,Wei HanBing1,Liang Ruiying2,Wang Yuan1,Su Xiaoyun1ORCID,Tu Tao1,Luo Huiying1ORCID,Yao Bin1,Ding Jiabo2,Tang Xinming2,Huang Huoqing1,Zhang Honglian1ORCID

Affiliation:

1. State Key Laboratory of Animal Nutrition and Feeding Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing China

2. Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing China

Abstract

AbstractChicken coccidiosis is an intestinal disease caused by the parasite Eimeria, which severely damages the growth of chickens and causes significant economic losses in the poultry industry. Improvement of the immune protective effect of antigens to develop high efficiency subunit vaccines is one of the hotspots in coccidiosis research. Sporozoite‐specific surface antigen 1 (SAG1) of Eimeria tenella (E. tenella) is a well‐known protective antigen and is one of the main target antigens for the development of subunit, DNA and vector vaccines. However, the production and immunoprotective effects of SAG1 need to be further improved. Here, we report that both SAG1 from E. tenella and its fusion protein with the xylanase XynCDBFV‐SAG1 are recombinant expressed and produced in Pichia pastoris (P. pastoris). The substantial expression quantity of fusion protein XynCDBFV‐SAG1 is achieved through fermentation in a 15‐L bioreactor, reaching up to about 2 g/L. Moreover, chickens immunized with the fusion protein induced higher protective immunity as evidenced by a significant reduction in the shedding of oocysts after E. tenella challenge infection compared with immunized with recombinant SAG1. Our results indicate that the xylanase enhances the immunogenicity of subunit antigens and has the potential for developing novel molecular adjuvants. The high expression level of fusion protein XynCDBFV‐SAG1 in P. pastoris holds promise for the development of effective recombinant anti‐coccidial subunit vaccine.

Funder

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3