Beyond methane, new frontiers in anaerobic microbial hydrocarbon utilizing pathways

Author:

Sarno Natalie1ORCID,Hyde Emily1ORCID,De Anda Valerie12ORCID,Baker Brett J.12ORCID

Affiliation:

1. Department of Integrative Biology University of Texas at Austin Austin Texas USA

2. Department of Marine Science University of Texas at Austin, Marine Science Institute Port Aransas Texas USA

Abstract

AbstractAlkanes, single carbon methane to long‐chain hydrocarbons (e.g. hexadecane and tetradecane), are important carbon sources to anaerobic microbial communities. In anoxic environments, archaea are known to utilize and produce methane via the methyl‐coenzyme M reductase enzyme (MCR). Recent explorations of new environments, like deep sea sediments, that have coupled metagenomics and cultivation experiments revealed divergent MCRs, also referred to as alkyl‐coenzyme M reductases (ACRs) in archaea, with similar mechanisms as the C1 utilizing canonical MCR mechanism. These ACR enzymes have been shown to activate other alkanes such as ethane, propane and butane for subsequent degradation. The reversibility of canonical MCRs suggests that these non‐methane‐activating homologues (ACRs) might have similar reversibility, perhaps mediated by undiscovered lineages that produce alkanes under certain conditions. The discovery of these alternative alkane utilization pathways holds significant promise for a breadth of potential biotechnological applications in bioremediation, energy production and climate change mitigation.

Funder

Simons Foundation

College of Natural Sciences, University of Texas at Austin

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3