Microbial drinking water monitoring now and in the future

Author:

Pluym Thomas12ORCID,Waegenaar Fien12,De Gusseme Bart123,Boon Nico12

Affiliation:

1. Center for Microbial Ecology and Technology (CMET), Department of Biotechnology Ghent University Ghent Belgium

2. Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE) Ghent Belgium

3. Farys, Department R&D – Innovation Water Ghent Belgium

Abstract

AbstractOver time, humanity has addressed microbial water contamination in various ways. Historically, individuals resorted to producing beer to combat the issue. Fast forward to the 19th century, and we witnessed a scientific approach by Robert Koch. His groundbreaking gelatine plating method aimed to identify and quantify bacteria, with a proposed limit of 100 colony‐forming units per millilitre (CFU/mL) to avoid Cholera outbreaks. Despite considerable advancements in plating techniques through experimentation with media compositions and growth temperatures, the reliance on a century‐old method for water safety remains the state‐of‐the‐art. Even though most countries succeed in producing qualitative water at the end of the production centres, it is difficult to control, and guarantee, the same quality during distribution. Rather than focusing solely on specific sampling points, we propose a holistic examination of the entire water network to ensure comprehensive safety. Current practices leave room for uncertainties, especially given the low concentrations of pathogens. Innovative methods like flow cytometry and flow cytometric fingerprinting offer the ability to detect changes in the microbiome of drinking water. Additionally, molecular techniques and emerging sequencing technologies, such as third‐generation sequencing (MinION), mark a significant leap forward, enhancing detection limits and emphasizing the identification of unwanted genes rather than the unwanted bacteria/microorganisms itself. Over the last decades, there has been the realization that the drinking water distribution networks are complex ecosystems that, beside bacteria, comprise of viruses, protozoans and even isopods. Sequencing techniques to find eukaryotic DNA are necessary to monitor the entire microbiome of the drinking water distribution network. Or will artificial intelligence, big data and machine learning prove to be the way to go for (microbial) drinking water monitoring? In essence, it is time to transcend century‐old practices and embrace modern technologies to ensure the safety of our drinking water from production to consumption.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

Reference86 articles.

1. Heterotrophic plate count bacteria—what is their significance in drinking water?

2. r- and K-Selection and Microbial Ecology

3. Antman F.&Flynn J.(2022)When beer is safer than water: beer availability and mortality from waterborne illnesses in 18th Century England.

4. Insects in water towers: Hibernating flies could compromise microbial drinking water quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3