Fermentation‐mediated growth, signaling, and defense in plants

Author:

Jardine Kolby J.12ORCID,McDowell Nate34

Affiliation:

1. Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

2. Ciências de Florestas Tropicais National Institute for Amazon Research Manaus 69067 Amazonas Brazil

3. Atmospheric Sciences and Global Change Division Pacific Northwest National Lab Richland WA 99354 USA

4. School of Biological Sciences Washington State University Pullman WA 99164 USA

Abstract

SummaryWhile traditionally considered important mainly in hypoxic roots during flooding, upregulation of fermentation pathways in plants has recently been described as an evolutionarily conserved drought survival strategy, with acetate signaling mediating reprograming of transcription and cellular carbon and energy metabolism from roots to leaves. The amount of acetate produced directly correlates with survival through potential mechanisms including defense gene activation, biosynthesis of primary and secondary metabolites, and aerobic respiration. Here, we review root ethanolic fermentation responses to hypoxia during saturated soil conditions and summarize studies highlighting acetate fermentation under aerobic conditions coupled with respiration during growth and drought responses. Recent work is discussed demonstrating long‐distance transport of acetate via the transpiration stream as a respiratory substrate. While maintenance and growth respiration are often modeled separately in terrestrial models, here we propose the concept of ‘Defense Respiration’ fueled by acetate fermentation in which upregulation of acetate fermentation contributes acetate substrate for alternative energy production via aerobic respiration, biosynthesis of primary and secondary metabolites, and the acetylation of proteins involved in defense gene regulation. Finally, we highlight new frontiers in leaf‐atmosphere emission measurements as a potential way to study acetate fermentation responses of individual leaves, branches, ecosystems, and regions.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3