Forest understorey flowering phenology responses to experimental warming and illumination

Author:

Lorer Eline1ORCID,Verheyen Kris1ORCID,Blondeel Haben1ORCID,De Pauw Karen1ORCID,Sanczuk Pieter1ORCID,De Frenne Pieter1ORCID,Landuyt Dries1ORCID

Affiliation:

1. Forest & Nature Lab, Department of Environment Ghent University Geraardsbergsesteenweg 267 BE‐9090 Melle‐Gontrode Belgium

Abstract

Summary Species are altering their phenology to track warming temperatures. In forests, understorey plants experience tree canopy shading resulting in light and temperature conditions, which strongly deviate from open habitats. Yet, little is known about understorey phenology responses to forest microclimates. We recorded flowering onset, peak, end and duration of 10 temperate forest understorey plant species in two mesocosm experiments to understand how phenology is affected by sub‐canopy warming and how this response is modulated by illumination, which is related to canopy change. Furthermore, we investigated whether phenological sensitivities can be explained by species' characteristics, such as thermal niche. We found a mean advance of flowering onset of 7.1 d per 1°C warming, more than previously reported in studies not accounting for microclimatic buffering. Warm‐adapted species exhibited greater advances. Temperature sensitivity did not differ between early‐ and later‐flowering species. Experimental illumination did not significantly affect species' phenological temperature sensitivities, but slightly delayed flowering phenology independent from warming. Our study suggests that integrating sub‐canopy temperature and light availability will help us better understand future understorey phenology responses. Climate warming together with intensifying canopy disturbances will continue to drive phenological shifts and potentially disrupt understorey communities, thereby affecting forest biodiversity and functioning.

Funder

Fonds Wetenschappelijk Onderzoek

H2020 European Research Council

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3