Invasion of a non‐native anuran likely disrupts pond ecosystems

Author:

Earl Brittany C.1ORCID,McIntosh Angus R.1ORCID,O'Regan Ryan P.1,Brown Saskia K.1,Warburton Helen J.1ORCID

Affiliation:

1. Te Kura Pūtaiao Koiora, Te Whare Wānanga o Waitaha | School of Biological Sciences University of Canterbury Christchurch New Zealand

Abstract

Abstract Freshwater ecosystems worldwide are under increasing pressure from multiple threats, including invasive species and climate change, with ponds being particularly vulnerable because of their shallow depth and dynamic hydrology. Australian brown tree frogs Litoria ewingii, introduced to New Zealand in 1875, have spread across both main islands, breeding in a large range of shallow fishless ponds. Since native frogs do not produce aquatic tadpoles, any tadpole influence will be novel, so these ecosystems may be especially vulnerable to such influences. To determine the functional role of L. ewingii tadpoles and to uncover potential effects on pond community structure and function, we conducted two 3‐week‐long mesocosm experiments. The first crossed tadpole presence with predatory invertebrate presence. Mesocosms containing tadpoles had a lower biomass of periphyton and macrophytes, and lower abundance of two families of small‐sized invertebrates (Culicidae and Chironomidae) compared to mesocosms without tadpoles, possibly as a consequence of grazing, predation or reduced dipteran oviposition. However, predatory invertebrates did not affect tadpoles except at their smallest stage, so L. ewingii probably are not subject to strong top‐down control by invertebrates in fishless ponds. We evaluated the effects of tadpole density on ecosystem processes in the second experiment where half the mesocosms also were shaded to simulate permanent pond hydrological status; shading stabilised the temperature fluctuations typical of temporary ponds. In shaded mesocosms tadpole density did not change phytoplankton, whereas in unshaded mesocosms, phytoplankton biomass increased with tadpole density, possibly because tadpole excretion enhanced algal growth in high light conditions. Higher densities of tadpoles also decreased dissolved oxygen concentration regardless of shading during the day—potentially an indirect effect of grazing on macrophytes and periphyton reducing photosynthesis. Overall, these non‐native tadpoles are likely to be having large influences on ecosystem processes such as nutrient cycling in small ponds, especially when at high densities. In light of these potential effects on pond ecosystems, and the generalist traits of these frogs which could see them spread to even remote alpine ponds, control measures to prevent further range expansion should be considered in New Zealand.

Publisher

Wiley

Subject

Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3