Plant dispersal in the Devonian world (c. 419–359 Ma)

Author:

Liu Bing‐Cai12,Wang Kai12,Bai Jiao12,Wang Yao13,Huang Bing1ORCID,Xu Hong‐He1ORCID

Affiliation:

1. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment Chinese Academy of Sciences Nanjing 210008 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. School of Geography and Tourism Qufu Normal University Rizhao 276826 China

Abstract

AbstractDispersal, whether active or passive, plays a crucial role in biogeography by facilitating the movement of propagules away from their original location. Botanical geographical zonation, resulting from the co‐evolution of plants and their environment, has been established since the remarkable plant diversification during the Devonian Period (c. 419–359 Ma). However, a significant knowledge gap exists in understanding plant dispersal between living and fossil organisms due to the rarity of opportunities for tracing plant dispersal in geological history. In this study, we present evidence of two plant dispersal routes and verify their occurrence through the examination of geographical zonation, changes in plant diversity, and latitudinal and longitudinal gradients during the Devonian. We analyse global occurrence data from widely‐distributed and extensively‐studied Devonian plants. The two dispersal routes, namely clockwise and anticlockwise, connect the South China and Euramerica–Siberia realms. These routes clearly demonstrate inland and inter‐land dispersal models, closely linked to Devonian sea–land topography and dispersal vectors such as wind and ocean currents. Moreover, these models probably apply to all Devonian plants. Our comprehensive synthesis of plant dispersal in deep time reveals that propagule diversity and dispersal vectors have progressively increased and become more complex over time, facilitating plant colonization and diversity changes. Importantly, our study unveils the dispersal models of fossil plants, demonstrating the equivalent models observed in extant plants that have been established since the Devonian Period.

Funder

National Key Research and Development Program of China

Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3