Quantitative ichnology: a novel framework to determine the producers of locomotory trace fossils with the ichnogenus Gordia as a case study

Author:

Wang Zekun1ORCID,Rahman Imran A.12ORCID

Affiliation:

1. The Natural History Museum London SW7 5BD UK

2. Oxford University Museum of Natural History University of Oxford Oxford OX1 3PW UK

Abstract

AbstractTrace fossils record the interactions between organisms and their surroundings, and can therefore provide unique insights into the coevolution of trace makers and the environment. However, identifying the producers of trace fossils is challenging because different animals can create very similar traces and many ichnotaxa can therefore only be attributed to broad morphological grades. For example, simple horizontal traces like Gordia are generally suggested to have been produced by vermiform organisms, potentially encompassing a range of animal phyla. This uncertainty makes it difficult to decipher their palaeobiological significance through major evolutionary events and episodes of environmental change. We have developed new mathematical approaches for identifying previously unrecognized signatures left by the trace makers of simple marine locomotory traces. We calculated the deviation angle series of self‐crossing traces made by extant isopods, polychaetes, gastropods and nematodes, computing the frequency spectrum and autocorrelation function in each case. The results reveal that each of these taxa left unique markers during the trace‐making process, reflecting differences in their anatomy and locomotory behaviour. We were able to identify the possible trace makers of several early Palaeozoic Gordia specimens, demonstrating that ichnospecies within the same ichnogenus can be created by distantly related animals with very different morphologies and/or behaviours. This novel mathematical framework has great potential for identifying the possible producers of diverse trace fossils through deep time, helping to uncover the earliest evidence of certain animals or behaviours. It also has great potential for quantifying ichnotaxonomy, consolidating the link between ichnology and palaeobiology.

Funder

Royal Society

Publisher

Wiley

Subject

Paleontology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3