What's inside a sauropod limb? First three‐dimensional investigation of the limb long bone microanatomy of a sauropod dinosaur, Nigersaurus taqueti (Neosauropoda, Rebbachisauridae), and implications for the weight‐bearing function

Author:

Lefebvre Rémi1ORCID,Allain Ronan2,Houssaye Alexandra1ORCID

Affiliation:

1. Mécanismes Adaptatifs et Évolution, UMR 7179, MNHN, CNRS Muséum national d'Histoire naturelle 55 rue Buffon, CP55 Paris 75005 France

2. Centre de Recherche en Paléontologie – Paris, UMR 7207, MNHN, SU, CNRS Muséum national d'Histoire naturelle 8 rue Buffon, CP38 Paris 75005 France

Abstract

AbstractVarious terrestrial tetrapods convergently evolved to gigantism (large body sizes and masses), the most extreme case being sauropod dinosaurs. Heavy weight‐bearing taxa often show external morphological features related to this condition, but also adequacy in their limb bone inner structure: a spongiosa filling the medullary area and a rather thick cortex varying greatly in thickness along the shaft. However, the microanatomical variation in such taxa remains poorly known, especially between different limb elements. We highlight for the first time the three‐dimensional microstructure of the six limb long bone types of a sauropod dinosaur, Nigersaurus taqueti. Sampling several specimens of different sizes, we explored within‐bone, between‐bones, and size‐related variations. If a spongiosa fills the medullary area of all bones, the cortex is rather thin and varies only slightly in thickness along the shaft. Zeugopod bones appear more compact than stylopod ones, whereas no particular differences between serially homologous bones are found. Nigersaurus' pattern appears much less extreme than that in heavy terrestrial taxa such as rhinoceroses, but is partly similar to observations in elephants and in two‐dimensional sauropod data. Thus, microanatomy may have not been the predominant feature for weight‐bearing in sauropods. External features, such as columnarity (shared with elephants) and postcranial pneumaticity, may have played a major role for this function, thus relaxing pressures on microanatomy. Also, sauropods may have been lighter than expected for a given size. Our study calls for further three‐dimensional investigations, eventually yielding a framework characterizing more precisely how sauropod gigantism may have been possible.

Funder

H2020 European Research Council

Publisher

Wiley

Subject

Paleontology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3