Rice encrusting with small‐seeded native species for reintroduction in agroecosystems: a case study in Lindernia procumbens

Author:

Corli Anna12ORCID,Mondoni Andrea12,Porro Francesco1,Rossi Graziano1,Vaglia Valentina1ORCID,Orengo Micol1,Pedrini Simone3ORCID,Orsenigo Simone12

Affiliation:

1. Department of Earth and Environmental Sciences University of Pavia, Via S. Epifanio 14, 27100, Pavia Italy

2. National Biodiversity Future Center (NBFC), Palermo 90133 Italy

3. School of Molecular and Life Sciences Curtin University, Bentley, WA 6102 Australia

Abstract

Seed coating is commonly applied in agricultural seed industry to alleviate biotic and edaphic barriers and improve seed germination, seedling emergence and establishment. Recently, this seed enhancement technology has been tested and applied to seeds of native species for ecological restoration and conservation. This work presents a novel application of seed coating for the reintroduction of species with dust‐like seeds that render direct seeding and cultivation unfeasible. Here we have used seed coating on Lindernia procumbens (Krocker) Philcox (Linderniaceae), a threatened annual species of paddy fields. Lindernia procumbens seeds were encrusted to the surface of rice seeds that acted as carrier to spread the species along rice sowing. We first tested how two selected concentrations of binder affected L. procumbens germination, then we investigated sowing depth (i.e. surface level—light, and buried—darkness) effect. Rice encrusting is a feasible and valuable tool for preserving threatened species with tiny seeds, since binder did not limit L. procumbens germination. Light increased L. procumbens seedlings emergence compared to buried conditions. Although L. procumbens emergence was limited in a paddy field trial, we promoted the formation of a soil seed bank for the species. As such, this should not discourage the possibility to reintroduce rare species with tiny seeds in agroecosystems. This pioneering technique can be extended to ecological restoration, where there is an urgent need for new seed‐based approaches and seed‐coating technologies to improve seedling establishment and restoration efficacy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3