FiNuTyper: Design and validation of an automated deep learning‐based platform for simultaneous fiber and nucleus type analysis in human skeletal muscle

Author:

Lundquist August1ORCID,Lázár Enikő1ORCID,Han Nan S.1,Emanuelsson Eric B.2ORCID,Reitzner Stefan M.23ORCID,Chapman Mark A.24,Shirokova Vera1,Alkass Kanar15ORCID,Druid Henrik5ORCID,Petri Susanne6ORCID,Sundberg Carl J.27ORCID,Bergmann Olaf189ORCID

Affiliation:

1. Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden

2. Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden

3. Department for Women's and Children's Health Karolinska Institutet Stockholm Sweden

4. Department of Integrated Engineering University of San Diego San Diego USA

5. Department of Oncology‐Pathology Karolinska Institutet Stockholm Sweden

6. Department of Neurology Hanover Medical School Hanover Germany

7. Department of Learning, Informatics, Management, and Ethics Karolinska Institutet Stockholm Sweden

8. Center for Regenerative Therapies Dresden Technische Universität Dresden Dresden Germany

9. Pharmacology and Toxicology University Medical Center Göttingen (UMG) Göttingen Germany

Abstract

AbstractAimWhile manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time‐consuming and prone to investigator bias. To address this challenge, we assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer).MethodsWe integrated recently developed deep learning‐based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle, and utilized SERCA1 and SERCA2 as type‐specific myonucleus and myofiber markers after validating them against the traditional use of MyHC isoforms.ResultsParameters including cross‐sectional area, myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber‐type‐specific manner, revealing that a large degree of sex‐ and muscle‐related heterogeneity could be detected using the pipeline. Our platform was also tested on pathological muscle tissue (ALS and IBM) and adapted for the detection of other resident cell types (leucocytes, satellite cells, capillary endothelium).ConclusionIn summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition and structure of healthy and diseased human skeletal muscle.

Funder

Zentrum für Regenerative Therapien Dresden

Karolinska Institutet

Vetenskapsrådet

Åke Wiberg Stiftelse

Fondation Leducq

Publisher

Wiley

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3