Chloroplast clustering around the nucleus induced by OMP24 overexpression unexpectedly promoted PSTVd infection in Nicotiana benthamiana

Author:

Han Kelei123ORCID,Jia Zhaoxing12,Zhang Yuhong12,Zhou Huijie12,Bu Shan12,Chen Jianping12,Yan Dankan3,Qi Rende3,Yan Fei12,Wu Jian12ORCID

Affiliation:

1. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts Institute of Plant Virology, Ningbo University Ningbo China

2. Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province Institute of Plant Virology, Ningbo University Ningbo China

3. Institute of Plant Protection and Agro‐Products Safety, Anhui Academy of Agricultural Sciences Hefei China

Abstract

AbstractChloroplast clustering around the nucleus is a well‐known mechanism that occurs in response to various biotic and abiotic stresses and is believed to be a mechanism of defence against pathogens in plants. This phenomenon is accompanied by increased production of reactive oxygen species (ROS), which can help to destroy invading pathogens. However, the function of chloroplast clustering during viroid infection is unclear. Here, we report that, although the infection by potato spindle tuber viroid (PSTVd) failed to induce chloroplast clustering, chloroplast clustering caused by the overexpression of the Nicotiana benthamiana chloroplast outer membrane protein 24 (NbOMP24) promoted the infection by PSTVd, a viroid pathogen, in N. benthamiana. Interestingly, H2O2 treatment, which caused increased ROS accumulation, showed no significant effects on PSTVd infection. Moreover, NbOMP24 protein showed no direct interaction with PSTVd. We propose that perinuclear chloroplast clustering induced by NbOMP24 provides a favourable environment for PSTVd infection. These findings highlight the complexity of chloroplast clustering‐mediated plant–pathogen interactions and the need for further research to fully understand these mechanisms.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Soil Science,Agronomy and Crop Science,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3