Biosynthesis‐ and transport‐mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis

Author:

Liu Huabin1,Luo Qiong1,Tan Chao1,Song Jia1,Zhang Tan1,Men Shuzhen1ORCID

Affiliation:

1. Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology College of Life Sciences, Nankai University Tianjin 300071 China

Abstract

SUMMARYAuxin is indispensable to the fertilization‐induced coordinated development of the embryo, endosperm, and seed coat. However, little attention has been given to the distribution pattern, maintenance mechanism, and function of auxin throughout the process of seed development. In the present study, we found that auxin response signals display a dynamic distribution pattern during Arabidopsis seed development. Shortly after fertilization, strong auxin response signals were observed at the funiculus, chalaza, and micropylar integument where the embryo attaches. Later, additional signals appeared at the middle layer of the inner integument (ii1′) above the chalaza and the whole inner layer of the outer integument (oi1). These signals peaked when the seed was mature, then declined upon desiccation and disappeared in the dried seed. Auxin biosynthesis genes, including ASB1, TAA1, YUC1, YUC4, YUC8, and YUC9, contributed to the accumulation of auxin in the funiculus and seed coat. Auxin efflux carrier PIN3 and influx carrier AUX1 also contributed to the polar auxin distribution in the seed coat. PIN3 was expressed in the ii1 (innermost layer of the inner integument) and oi1 layers of the integument and showed polar localization. AUX1 was expressed in both layers of the outer integument and the endosperm and displayed a uniform localization. Further research demonstrated that the accumulation of auxin in the seed coat regulates seed size. Transgenic plants that specifically express the YUC8 gene in the oi2 or ii1 seed coat produced larger seeds. These results provide useful tools for cultivating high‐yielding crops.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3