Soluble ST2 regulation by rhinovirus and 25(OH)-vitamin D3 in the blood of asthmatic children

Author:

Haag P1,Sharma H2,Rauh M3,Zimmermann T3,Vuorinen T4,Papadopoulos N G5,Weiss S T2,Finotto S1ORCID

Affiliation:

1. Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany

2. Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized Medicine, Cambridge, MA, USA

3. Department of Allergy and Pneumology, Children's Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany

4. Department of Virology, University of Turku, Turku, Finland

5. Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistria, University of Athens, Athens, Greece

Abstract

Summary Paediatric asthma exacerbations are often caused by rhinovirus (RV). Moreover, 25(OH)-vitamin D3 (VitD3) deficiency during infancy was found associated with asthma. Here, we investigated the innate immune responses to RV and their possible modulation by 25(OH)-VitD3 serum levels in a preschool cohort of children with and without asthma. The innate lymphoid cell type 2 (ILC2)-associated marker, ST2, was found up-regulated in the blood cells of asthmatic children with low serum levels of 25(OH)-VitD3 in the absence of RV in their airways. Furthermore, in blood cells from control and asthmatic children with RV in their airways, soluble (s) ST2 (sST2) protein was found reduced. Asthmatic children with low 25(OH)-VitD3 in serum and with RV in vivo in their airways at the time of the analysis had the lowest sST2 protein levels in the peripheral blood compared to control children without RV and high levels of 25(OH)-VitD3. Amphiregulin (AREG), another ILC2-associated marker, was found induced in the control children with RV in their airways and low serum levels of 25(OH)-VitD3. In conclusion, the anti-inflammatory soluble form of ST2, also known as sST2, in serum correlated directly with interleukin (IL)-33 in the airways of asthmatic children. Furthermore, RV colonization in the airways and low serum levels of 25(OH)-VitD3 were found to be associated with down-regulation of sST2 in serum in paediatric asthma. These data indicate a counter-regulatory role of 25(OH)-VitD3 on RV-induced down-regulation of serum sST2 in paediatric asthma, which is relevant for the therapy of this disease.

Funder

Department of Molecular Pneumology in Erlangen

DFG

European Grant Predicta

Universitätsklinikum Erlangen

Allergy and Clinical Immunology Unit

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3