Alterations in cortical volume and complexity in Parkinson's disease with depression

Author:

Yuan Jiaying1,Liu Yujing1,Liao Haiyan12ORCID,Tan Changlian1,Cai Sainan1,Shen Qin1,Liu Qinru1,Wang Min1,Tang Yuqing1,Li Xu1,Liu Jun12,Zi Yuheng13

Affiliation:

1. Department of Radiology, The Second Xiangya Hospital Central South University Changsha China

2. Clinical Research Center For Medical Imaging in Hunan Province Changsha China

3. Department of Radiology, The First Affiliated Hospital, Hengyang Medical School University of South China Hengyang China

Abstract

AbstractAimsThe aim of this study is to investigate differences in gray matter volume and cortical complexity between Parkinson's disease with depression (PDD) patients and Parkinson's disease without depression (PDND) patients.MethodsA total of 41 PDND patients, 36 PDD patients, and 38 healthy controls (HC) were recruited and analyzed by Voxel‐based morphometry (VBM) and surface‐based morphometry (SBM). Differences in gray matter volume and cortical complexity were compared using the one‐way analysis of variance (ANOVA) and correlated with the Hamilton Depression Scale‐17 (HAMD‐17) scores.ResultsPDD patients exhibited significant cortical atrophy in various regions, including bilateral medial parietal–occipital–temporal lobes, right dorsolateral temporal lobes, bilateral parahippocampal gyrus, and bilateral hippocampus, compared to HC and PDND groups. A negative correlation between the GMV of left precuneus and HAMD‐17 scores in the PDD group tended to be significant (r = −0.318, p = 0.059). Decreased gyrification index was observed in the bilateral insular and dorsolateral temporal cortex. However, there were no significant differences found in fractal dimension and sulcal depth.ConclusionOur research shows extensive cortical structural changes in the insular cortex, parietal–occipital–temporal lobes, and hippocampal regions in PDD. This provides a morphological perspective for understanding the pathophysiological mechanism underlying depression in Parkinson's disease.

Funder

Natural Science Foundation of Hunan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3